
CTRL_SPACE: Using Animatronics to Introduce Children to Computation

Andrew Sempere and Bakhtiar Mikhak
Grassroots Invention Group, MIT Media Laboratory

{andrew, mikhak}@media.mit.edu

Abstract

In this paper we present hardware and a software

environment called CTRL_SPACE, specifically
designed to introduce preliterate children to basic
computational concepts. This is done through the
control of an animatronic face whose individual
components are used as an analogy for a
programmable object. The software environment is
visual, and the entire work is grounded in a critical
historical view of computers and computation.

1. Introduction

With few notable exceptions [1,2,4,7], our notion of

programming and computation belongs to a bygone
era. The fairly recent availability of cheap, powerful
computation allows us to spend more computational
cycles on interface. In the process of rethinking what
an interface to computational ideas means we uncover
two critical points:

1. The historical trend in promoting “computer
literacy” has maintained a focus on learning how to
communicate in “computer language.” The true power
of computation, the ability to use computational
thinking to solve problems, has taken a back seat to
learning how to co-exist with technology.

2. This state of affairs is the result of a series of
interface design decisions, many of which rely on
historical precedent that is largely accidental.
Rethinking what is truly important about computation
while taking into account the possibilities offered by
the access to surplus computational resources by
designers of educational systems, we arrive at the
conclusion that computation and computers are
fundamentally different things. At worst, computers as
the instantiation of computational ideas become
blocking factors to understanding those ideas.

It is possible to reconsider completely what
computation “looks like” and thus reconceive what it
means to introduce children to computation.
CTRL_SPACE attempts this by rethinking what it
means to discuss the idea of “programming.”
CTRL_SPACE is used in conjunction with an

animatronic head, called ALF: Acrylic Life Form [7],
which allows us to leverage the inherent familiarity
children have with face making and the similarity this
has to several basic computational concepts such as
objects, parameters and command sequencing.

2. Traditional approach to computation

Computational ideas existed long before the

computer on our desks, and yet it is the object that we
interact with and that which is most often the focus of
so called computer literacy programs. In evaluating
and creating new interactive systems for children it is
important to recognize that the character of computers
owes more to the history of computer use than to any
principle of computation.

The primary user interface of the computer (the
keyboard and screen), while extremely powerful, is the
result of a historical convergence of technologies
originally developed for different purposes. Text based
programming with its lists of sequential instructions
has served us well and is likely to continue to do so,
but there is little inherently computational in these
systems of instructional communication.

The primary series of questions asked in the early
stages of this research were the following: Is the
dominant method of manipulating computation (text
based programming) which serves traditional modes of
use well (quantitative analysis) truly appropriate for all
uses of computation? Does it provide the most direct
access to computational ideas? Is this method
appropriate in developing systems for children?

3. Alternatives

There are many existing examples of visual
programming languages or programming systems that
incorporate visual/spatial elements. Visual Basic,
MAX/MSP and Macromedia Director are a few such
systems. None are appropriate for preliterate children.

One example that comes close is LogoBlocks, a
graphical programming language designed for use with
the programmable brick (precursor to the Lego RCX
microcontroller) [1]. LogoBlocks uses the Logo

language for programming, but adds color and shape to
code the commands as a way of assisting young
children and novices in programming tasks. This
coding functions as a substitute for linguistic syntax,
but ultimately with LogoBlocks the user is still
working with text. Why not eliminate the need for
written language entirely?

3.1 Visual programming & the Deutsch Limit

In the project proposal for LogoBlocks, Andrew

Begel examines some of the problems of adopting
graphical programming languages, the foremost being
the so-called Deutsch limit: “Deutsch originally said
something like ‘Well, this is all fine and well, but the
problem with visual programming languages is that
you can't have more than 50 visual primitives on the
screen at the same time. How are you going to write an
operating system?’”

With regards to the development of an environment
for preliterate children the answer to this objection is
simple: We aren't. Writing an operating system in a
fully graphical programming environment is not
straightforward, efficient, or useful.

The purpose of this work is to find the space where
visual and physical programming is maximally useful,
something that seems to be the case only in particular
domains. The challenge remains in allowing for a
seamless transition to more “advanced” techniques
when the time comes. In part, the answer to this is
found in recognizing that for many people and many
cases, computation serves a particular task. While such
people will undoubtedly benefit from an understanding
of computational problem solving skills, general-
purpose programming is far from necessary.

3.2 Physical programming and imitation

In their work, Allen Cypher, Henry Lieberman and
others describe programming by example [3]. While
Cypher, et al were not explicitly concerned with
children, the idea of imitation as a method of
programming is shared by the research described here.
Imitation, especially with young children, is an
excellent way to communicate information. Young
children are highly self-focused and are quite good at
expressing what they want to do “like this.” This
characteristic is similar to that which Papert leverages
when he discusses body syntonicity and “playing
turtle” [6] (although body syntonicity remains first
person egocentric, while in the case of CTRL_SPACE
we are asking the children to project themselves onto
an other).

3.3 Physical, virtual, and the intermediate

There have been several physical programming
environments developed to leverage children’s affinity
for imitation. In particular, it is worth mentioning Dr.
Legohead, an animatronic head that is programmed by
direct physical manipulation. Dr Legohead was a
product of Rick Borovoy's thesis work [9].

More recently, the Tangible Interface Group at the
MIT Media Lab has developed Topobo: Physical
Programming Instantiated [11], a “constructive
assembly system” which allows users to build an
object and program it by physically moving its parts.
Topobo records these movements and replays them.

In both cases, computation is attached directly to
physical objects, removing the intermediate layer
between the programmer and the programmable object.
While Borovoy and others outline the reasons that
introducing physicality is an improvement over purely
screen based systems, eliminating the intermediate
layer entirely does away with a host of possibilities.

It remains a basic tenet of computer science that
given enough time and space, the analog world can
produce the same results as the digital. Even so, there
are particular classes of problems and actions that are
utterly impractical to model in the analog world. Code
re-use is difficult if one has to literally construct
multiple instances of the same object. Recursion is
nearly impossible. Dr. Legohead and Topobo are
excellent and necessary steps in breaking from the
tradition of requiring a complex syntax for
programming. The next logical step is careful
reintroduction of an abstract intermediate software
layer to enable better access to the rich power of
computation

4. Facemaking, containership, debugging

CTRL_SPACE interfaces a general purpose input
device with ALF: Acrylic Life Form [5], an
animatronic head (shown in figure 1), designed and
built by Chris Lyon, a member of the Media Lab’s
Grassroots Invention Group. ALF has six features that
are controlled by the Tower modular computer system
[5]. As an object, a face can be used to represent a kind
of computational containership. A face can be easily
broken down into component parts and easily
sequenced to create actions. It is not difficult to discuss

Figure 1. ALF (left) and mapping (right)

the face as a single object and also to refer to its
parameters (eyes, ears, mouth). One can issue a
command to the object (make a sad face) and then
adjust individual parameters (now raise one eyebrow)
and the outcome is immediately visible. Considered
this way, the potential for addressing a wide range of
computational concepts using a face is readily
apparent. For example, one could imagine presenting
the idea of a state machine with a face. Debugging is
made simple by virtue of the fact that the wrong
sequence of commands results in a face that is
immediately visually recognizable as “wrong.”

Perhaps more important than the fact that faces
exhibit containership is the fact that faces are
intimately familiar objects to all of us. There is a great
deal of research that indicates how significant our
brains consider facial recognition to be. Piaget
discusses the fact that children as young as eight
months use imitation (of sounds, as well as physical
actions) to explore their world. More recent research
by Stern [9] and Tronick [10] highlights the specific
importance of facemaking to early development. By
the age of four, children are fully capable of
understanding how to control their own faces and are
intimately interested in the notion of representation on
the face (what indicates sad, happy, angry). Therefore,
the face provides us with an object that is readily
understood by a four year old, has a very familiar
analog (one’s own face) and at the same time
demonstrates a kind of containership that is useful for
accessing a number of computational ideas.

5. Storytelling and sequencing

While it is the face robot that allows for “object-

oriented-ness,” it is the nature of storytelling that
allows for children to establish a rule set. The story
becomes a script and can be thought of as
programmatic sequencing. The introduction of sensor
data as an event trigger provides a mechanism to
introduce logic structures and conditionals. The

addition of multiple ALFs or similar objects would
allow for multiple characters and parallel rule sets.

Figure 2. Action creation mode

6. Representation of actions

The CTRL_SPACE environment is an attempt at
leveraging the power of physical interface and
software abstraction. The system is fully graphical,
contains no text, and centers around the idea of action.
The environment supports two modes of use: action
creation and action sequencing. Figure 2 and figure 3
show screenshots from the action creation mode and
the action sequencing mode respectively.

Actions are represented by two related fields: the
timeline, which shows a visual representation of
change over time, and the mapping of these values to
particular

Figure 3. Action sequencing mode

features of ALF, as shown by the color coding of the
arrows on the ALF head (figure 1.)

Creation mode allows for the creation and editing of
actions, which may be stored for later use. Saved (or
minimized) actions are represented by the “ALF in
motion” icon and are stored in the action palette on the
right hand side of the screen.

Once a child has built up a library of actions, they
may use the action sequencing mode to define a
“program” consisting of a sequence of a number of
actions. Sequencing mode also introduces basic logic
structure and branching on the basis of conditionals.

7. Representation of conditionals

When users drag the conditional branch icon onto a
frame (or click on a frame which contains a
conditional) they are presented with a dialog box that
allows them to adjust the type of conditional. There are
two types of conditionals, blocking and non-blocking,
which correspond roughly to wait…until and
if…then...else statements respectively. Blocking
conditionals are indicated by a red question mark and
cease program execution until the condition is true, at
which point the program branches as indicated. Non-
blocking conditionals are indicated by a yellow
question mark. With non-blocking conditionals, the
condition is tested once when the frame is executed.
True evaluation branches the program to the indicated
subroutine. False evaluation continues the program on
the next frame.

The destination of a program branch is indicated by
an icon which corresponds to one of the three optional
sequences specified below the main sequence. By
using a loop or another conditional in the frame
following a non-blocking conditional, the user can
create more complex logic structures, as shown in
figure 4 along with a more traditional textual
representation in pseudocode.

8. CTRL_ARM physical interface

Early on, it became apparent that a device that
would bring the act of issuing commands to ALF
closer to the physical act of puppeteering could prove
useful. At the same time, it seemed important to create
an interface that lent itself to the use and discovery of
computational abstraction. This requirement seemed to
call for an interface that was not a replica of the ALF.

To that end, a two axis armature, called
CTRL_ARM, was constructed. CTRL_ARM uses
analog potentiometers to measure hand movements,
sending data in real time to the CTRL_SPACE
software. CTRL_SPACE allows a child to map sensor
inputs in real time to one or more of ALF’s features.
The software also allows users to record the sensor
input and play it back at any point in time.

The act of mapping the world to digital space is
itself a computational idea and is supported most
directly by allowing the CTRL_ARM motions to be

mapped arbitrarily to one or more of ALFs features.
Motion occurs in real time, but computation allows it
to be manipulated in any number of ways.

CTRL_ARM provides concrete access to ALF in
the sense that it involves physical motion, but abstract
access through computation in that it allows for
arbitrary mapping of sensors.

if CONDITION A

{

subroutine ~
}

else

{

 if CONDITION B

 {

 subroutine �

 }

 else

 {

 waituntil(CONDITION C)

 {

 subroutine �

 }

}

Figure 4. Logic Structure and Equivalent

9. The power of augmented reality

In terms of introducing children to computation, the
physical world is a wonderful starting point because of
its familiarity and children’s natural inclination to
explore the way objects move, bend and break.
Augmented reality marries the familiarity of our analog
world and our natural inclinations to hold, shape, poke
and prod with our hands to the infinitely malleable
world of computation.

The design of a physical interface for use by
children is in no way a trivial task. CTRL_ARM is
presented as one example of a possible physical
interface (and a very simple one at that). The topic of
design of physical interfaces for children deserves a
thorough investigation and may even serve as a site of
learning for the children, who may benefit from
designing their own interfaces. In an effort to better

support this, CTRL_SPACE was built around the idea
of generalized sensor input rather than “CTRL_ARM
input,” allowing any number of existing or future input
devices to be built and used in conjunction with
animatronic objects.

10. ALF represents a class of objects

While it should be clear by now that an animatronic

head with discrete movable parts is a good choice for
this environment, it is important to note that ALF is
presented here not as the ideal object, but as a
representative of a class of objects.

ALF is a head-only robot with a limited number of
movable parts. While it has proven more than
sufficient as a proof of concept device, much can be
gained by using other animatronic objects. The
CTRL_SPACE software environment is ultimately
intended to be multi-purpose in this sense: able to
control a wide range of motor driven programmable
objects.

In order to encourage this, ALF’s control structure
(based on the Tower modular computing system) may
be completely removed and re-used with
CTRL_SPACE to manipulate whatever objects one
wishes. In addition to using other existing objects, the
possibility of designing one’s own animatronic
character in this way is quite compelling, opening up
an entirely different and interesting set of ideas which
cover engineering, materials science, physics,
electronics and control feedback.

11. Conclusion

In CTRL_SPACE, the use of the face robot as an
analog to one's own face enables access to
computational ideas in a familiar manner. The act of
imitation allows the child to teach ALF what to do and
the incorporation of sensors for input allows one to
literally program ALF by example. An intermediate
software environment provides a layer of abstraction
that allows access to powerful computational concepts,
but remains text free, sacrificing generality of purpose
for specificity of task that eases understanding. A
careful balance is maintained by virtue of the fact that
the CTRL_SPACE software is deliberately limited in
scope.

 A number of choices have been made in
CTRL_SPACE which, while they allow for easier
access to complicated concepts for very young
children, may prove frustrating for more experienced
users. In such cases, it is important to note that the
choice has been made deliberately in an effort to make

concepts more accessible. The problem of growth is
mitigated by the fact that CTRL_SPACE should be
seen as one of a family of projects. The hardware is
based on the Tower modular computing system; there
is little to prevent (and much to help) them to continue
their work using a high level language of their choice.

Finally, the concentration of this paper has been
entirely about the environment, but it is important to
point out a crucial and often overlooked component of
children, technology in education: namely, children!
CTRL_SPACE represents the result of a participatory
design process that led to a series of design guidelines
[8]. The experience of the children and these
guidelines are both critical. While technology affords
us new ways of communicating ideas to learners,
education begins and ends with the people involved;
people whose learning process must never take a
backseat to any technology.

12. References

[1] Begel, A. (1996). LogoBlocks: A Graphical
Programming Language for Interacting with the World
(AUP). MIT Media Lab.

[2] Borovoy, R. D. (1996). Genuine Object Oriented
Programming. MIT Media Lab, MIT.

[3] Cypher, Allen, Et al (1993). Watch What I Do:
Programming by Demonstration. Cambridge, MIT Press.

[4] Hancock, C. (2003). Real-time programming and the big
ideas of computational literacy. MIT Media Laboratory.
Cambridge, MIT.

[5] Lyon, C. (2003). Encouraging Innovation by Engineering
the Learning Curve. Electrical Engineering and Computer
Science, MIT.

[6] Papert, S. (1993). Mindstorms: Children, Computers, and
Powerful Ideas - Second Edition. New York, BasicBooks

[7] Raffle, Hayes, Amanda Parkes, Hiroshi Ishii (2004).
Topobo: A Constructive Assembly System with Kinetic
Memory. CHI 2004, April 24-29.

[8] Sempere, A. (2003). Just Making Faces? Animatronics,
Children and Computation . MIT Media Laboratory.
Cambridge, MIT

[9] Stern, D. (2002). The First Relationship. Cambridge,
Harvard University Press.

[10] Tronick, E. Z. (1986). Maternal Depression and Infant
Disturbance. New Directions for Child Development, no.34.
San Francisco: Jossey-Bass, Winter.

	1. Introduction
	2. Traditional approach to computation
	3. Alternatives
	3.1 Visual programming & the Deutsch Limit
	3.2 Physical programming and imitation
	3.3 Physical, virtual, and the intermediate

	4. Facemaking, containership, debugging
	5. Storytelling and sequencing

	6. Representation of actions
	7. Representation of conditionals
	8. CTRL_ARM physical interface
	9. The power of augmented reality
	10. ALF represents a class of objects

	12. References

